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only negative values for any zI . Then the derivative (2.5) is a positive-definite func- 

tion in the variables u, &, . . . , Em-1 and it is evident that the unperturbed motion 

is asymptotically stable with respect to the variables u, &, . .., E,_l when a is odd, 
and unstable when c1 is even [5]. 

Thus, we obtain the following theorem. 
Theorem 4. Let the equations of perturbed motion used in investigating the sta- 

bility with respect to a part of the variables be reduced in the critical case of a single 

zero root to the form (2.3) . Let also the Conditions A, B (1.4) and (2.4) all hold. Then, 
if g (Z1, . . . . z,,) assumes only the negative values, the unperturbed motion of the sys- 

tem (2.3) is asymptotically y -stable if a is odd, and y-unstable if a is even ; if g (zi, 
. . . . zp) assumes only the positive values, then the unperturbed motion of the system 

(2.3) is y-unstable. 
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Averaged equations for defining in long-wave approximation the flow of a con- 
ducting fluid film on the vertical wall of a plane channel in a transverse electric 
field are derived. The convective and absolute instability of laminar flow is in- 
vestigated with the use of these equations. It is established that periodicperturba- 
tions are intensified downstream of the flow only if their frequency does not ex- 
ceed the critical frequency which depends on the electrohydrodynamic interac- 
tion parameter and the Weber number. It is shown that the electric field has a 
destabilizing effect owing to the increase of surface charge density in the vici- 
nity of wave crests. This results in an increase of surface forces produced by the 
electric field at wave crests thereby reducing the stabilizing effect of surface 
tension forces. Proof is given of the absolute stability of the laminar flow of a 
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film in an electric field. The derived criterion of convective instability coin- 
cides qualitatively with experimental data obtained in investigations of film 
condensation of steam in vertical condensing systems in the presence of a trans- 
verse electric field. 

Experimental investigations [l] of film condensation of steam in a vertical 
condenser with a transverse electric field had shown that when the intensity of 

the latter exceeds some critical value, the intensity of heat exchange consider- 
ably increases. This is explained by the electrohydrodynamic instability offlow 

of a liquid condensate film. To determine the conditions of film flow instability 
in an electric field at a fixed flow rate of the liquid experiments were carried 

out with a film running off the lining of a plane condenser set at an angle to the 
horizontal. The problem of eigenvalues of the Orr-Sommerfeld equation [2] is 
solved for the limit case of small Reynolds numbers 13 < 1 . 

1. Input equatlon8. Let us consider the unsteady flow of a conducting liquid 

film on one wall of a plane channel of width I formed by two vertical electrodes. We 
select the system of orthogonal coordinates in which the direction of the z-axis coin- 
cides with that of the force of gravity and the y-axis is normal to the electrodes. The 

liquid is contained in region - 00 < z < $00 , 0 < y < 12 (z, t) and the re- 

maining space between the electrodes is filled with a nonconducting gas at rest. The 
electrodes are under a fixed potential difference V,. In the electrohydrodynamic appro- 
ximation the considered plane flow is defined by the system of equations [3] 

Acp=O , divv= 0, dv/dt+(vV)v = ---+p+y~v+g (1.1) 

with boundary conditions of the form 

y = 0, v, = 0, uy : 0; y =1, cp = v, (1.2) 

y = h (x, q, cp = 0, UT, = g + u, g ,2E+z!b+ (1.3) 

where cp is the potential of the electric field, v = (u,, u,) is the velocity, g is the 
acceleration of gravity, p and p are, respectively, the density and the pressure of the 
liquid, pa is the pressure of gas, Y is the kinematic viscosity coefficient, a is the sur- 
face tension corfficient, and the prime denotes derivatives with respect to x. 

The problem (1.1) - (1.3) has an exact solution which determines the laminar flow 
of a film with a free surface. In that case the distribution of parameters is defined by 

‘p = Eo (h - YL E,=&, 33yQ 
h=: - ti g 

gh2 uxzv +__+ + 

[ 
2 

i )I EO2 ) VI, = 0, P=Pa-- 

(1.4) 

It is assumed in what follows that the flow rate Q of the liquid is independent oftime. 
We assume the flow to be of the long-wave kind, 1.e. E = h/h<1 and h’ & a, where 

k is a characteristic dimension of the free surface nonuniformity along the z -axis. 
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Estimates of the order of magnitude of quantities appearing in equations and boundary 
conditions show that in the flow region 

a%, a%~, I axa aya 
= 0 (&2), p (5, h, t) - p (5, 0, t) = 0 (ES) + 0 (e2R-1) (1.5) 

and at the free surface 

au, - = 0 (C), 
ay 

p - pa + & ( %)a + a g = 0 (ER-~) 

where R is the Reynolds number based on the mean film thickness and mean longitu- 

dinal velocity. These estimates show that for R 2 1 the pressure across the film is con- 

stant and is determined by surface tension forces and the disnibution of the charge SLIP 

face density, and that at the free surface 

Y = h c2, t), dv, = 0, ay 
p _ Pa = _ _& acp ( ) ay 

2 _ a azh 
a22 (1.6) 

Taking into account (1.5) and (1.6) we can write the equation of motion in the projec- 
tion of the. z-axis as follows : 

s+ vx 2 + VY 2 = & & ($+, t) -I- 
u av2 8% 

-- 

p as +v++g 
(1.7) 

To simplify the analysis of stability of the laminar flow (1.4) we use the method ofave- 

raging functions 2~~ and uy proposed in [4]. We assume that approximately 

(1.8) 

where u (2, t) is the mean longitudinal velocity over the cross section. The profile 
defined by (1.8) satisfies the boundary conditions (1.2) and (1.6), and in the case of a 
stationary laminar flow is the same as derived by the exact solution (1.4). The equation 
of continuity readily yields the transverse velocity disaibution 

3 Y2 
vy = -ij- 

( )( h 
uah_f&a” 

ax z) + (+)3(u $-fh $) (1.9) 

Substituting (1.8) and (1.9) into the equation of motion (1.7) and averaging over the 
film thickness, we obtain 

au __$_$+EE-$$= 
at 

(1.10) 

1 a aq2 
8npz ay ( ) VE+., t) + + g- - g f g 

The kinematic condition (1.3) at the free surface can be represented in the integral form 

ah/at+auh/axzo (1.11) 

In what follows we use as input equations (1.10) and (1.11) and the Dirichlet problem 
for the Laplace equations (1.1) - (1.3). 

2. Convectivs Instability. Let us assume that continuously acting infinitely 
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small perturbations of specified frequency w are imposed at some point 5s on the lami- 
nar flow, so that for z > x,, 

U = us + U1r h = ho + h,, ‘p = ‘PO + 'pl (2.1) 

where the subscripts 1 and 0 denote perturbation and the stationary solution (1.4), res- 
pectively. Let us investigate the behavior of perturbations propagating downstream. We 

introduce the substitution ‘1 = y - ho. Substituting (2.1) into the equations and boun- 
dary conditions, we obtain in linear approximation 

$+$=o, rp(xA~)=E,h, cp(z,Z,t)=O (2.2) 

au uo ah 9uo au 3~02 ah -- & at-Tat+ ,o &----=--- a29 
IOh0 ax + 

a @h 3vu Gvuoh 
4np axall 7J=o 

----’ 
p 8x3 ho2 + ho3 

(here and subsequently the subscript 1 is omitted). 

We seek particular solutions of system (2.2) in the form of travelling waves propagat- 
ing in the positive direction of the x -axis 

u = &(kr-of) , h = &+(kx-~O, cp = x (q) ei(loc-4 

It is readily seen that h and cp are related by rp = E,he-kn. The wave vector k is 

not known a priori and is to be determined in the course of solving the problem. 
We introduce the dimensionless quantities 

who 

c=u,W’it’ 
kho 

X=w’Ip, pf.7 - PU$J ) 

R+, 4=sw11~, z z.z R W”’ 

where R is the Reynolds number, S is a parameter of electrohydrodynamic interaction, 

and w is the Weber number. The condition of existence of a nontrivial solution of sys- 
tem (2.2) yields the dispersion equation 

z (x” - qx3 - 1.2x2 + 2.4~ - c”) + 9ix - 3ic = 0 (2.3) 

In the general case X (c) is a multiple-valued complex function which depends on para- 

meters q and z. Only that branch of x1(c) for which x,(O) = 0 has any physical 
meaning. The perturbations are attenuated for Im x1 > 0 , and for Im x1 < 0 they 
increase in region 5 > x0. If Im x1 = 0, we have indifferent stability. Let us invest- 
igate the behavior of Im xi. Separating in (2.3) the real and imaginary. parts and eli- 
minating c, we obtain 

2x,2(x,2 - qx, - 3) - xi [9 + x,%2 (6.4~~~ - 5.2qx, + 0.96)l - 
3/.i2x,2z3[1.78x,4 - 2.67qx,3 + xr2(q2 -0.24) + 0.32qx, - 0.131 - 
xi22 (6x,.2 - 3q~,, - i5.6) + ~i3~714.4~~~ - 6q~, - 7.68) + Xi42 + 

xi4z3[3.56Xr3(X, - q) + xr7(0.67q2 - 3.41) + 1.81qx, + 0.771 - 
1.6xisZ2 + XieZ3 IO.64 - (0.44x, - l.lq)21 = 0 

X, = Re x1, xi = Im xI 
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This equation shows that for any finite (I and z there exists in the plane x,., xi a 
curve with second-order tangency to the xi-axis at the origin of coordinates, which in- 

tersects that axis at points ulr2 = 0.5 Iq & (qz + 12)‘hl. We denote that curve by I’. 
For z < 1 it is possible to obtain the equation for I? in the explicit form along a cer- 
tain finite interval of the x,-axis, which contains the coordinate origin. Expanding the 

algebraic function xi by the Newton’s diagram method [5] in increasing powers of z 

and restricting the expansion to its first terms, we obtain the following six expansions: 

9Xil = 2x,* (XT2 -p, -3), xi2 = p, 
3-Ti1/jj-l 

xi3= T 
v 2 

(2.4) 

"-siI/s+l xi4z- - 
v 

15 
2 2 ’ %6 - z(12+20xr*5q) 

Expansion 3Cir is the equation of r. Curve of this function is shown in Fig. 1. It is pos- 
sible to show that condition c = 3x, is satisfied at point (a,, 0) . Hence perturbations 
induced at frequency o* = 1.5 u,,h,-‘P, where P = SW + (S2w2 + 12 V’)“r, 

propagate downstream with a constant amplitude. Expressing the wave length of such 
perturbations in terms of parameters of the unperturbed flow k = 4&,$-l, we find that 
p < 4n is the condition of applicability of the system of equations of the long-wave 
approximation. 

It is seen from Fig. 1 that lci < 0 for 0< x,< a, and xi > 0 when x, > a,. 
Along curve I? function c (1~~) is real, and c increases with increasing distance from 

b*; 

the coordinate origin. Since for any q and z curve I’ 
intersects the semiaxis x, > 0 only at a single point, 
hencefor o< o* wehave xi< 0. Thustheinsta- 
bility of the considered flow is of the convective kind 

with respect to perturbations of frequencies lower than 

Fig. 1 
o*. If, however, o > w*, the perturbations become 
attenuated in region 5 > ~a. The expression for o * 

implies that the electric field has a destabilizing effect. Physically this is explained by 

the increase of the charge surface density in proximity to wave crests, owing to the in- 
crease of curvature of the free surface induced by the superposed perturbations. As the 
result, the surface forces induced by the field and acting on the wave crests tend to in- 
crease thus reducing the stabilizing effect of surface tension forces. The presence of 
waves at the surface of liquid leads to a much earlier breakdown of a dielectric in con- 
tact with a liquid electrode than the breakdown in the presence of plane solid electrodes 

16. 71. 

3. Absolute stability, Let us suppose at the instant of time t = 0 perturba- 

(3.1) 

appear along a finite section of the flow. We assume that jr(z), f2(z) and ‘p (z, tl, 0) 
are related by appropriate congruence conditions. Further development of perturbations 
is defined by system (2.2) with initial conditions (3.1). Perturbations may either infini- 
tely increase in any region fixed with respect to z, or remain finite with increasing time 
t . In the first case the flow is called absolutely unstable [8], and in the second, absolut- 
ely stable. The considered flow is absolutely stable (*) (see footnote at the next page). 
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To prove this statement we express each of the quantities 
integrals in k of the form 

A @., t) _ i ; II, (k) ,i[~s-Oj(h-)~l& 

j=l-cc 

u and h in terms of Fourier 

(3.2) 

It is possible to express cp (5, 11, 1) by a similar formula with the integrand containing 
the factor Ckri. Functions I$ (k) are determined by initial conditions (3. l), and oj (k) 

are single-valued branches of function 0 (k) which is defined by the dispersion equation 
(2.3), The dimensionless form of this function is 

___ 
c = 1.2x - 1.5iz-’ + v )-’ (x) 
P (x) = x4 - qx3 + 0.24~~ + 5.4iz-lx - 2.25z+ 

(3.3) 

We distinguish branches o,(k) and o,(k) by their value at the coordinate origin, viz, 

o,(O) = 0 and o,(O) = - 3vhPi. Let us investigate the behavior of Im ol. Assuming 
c to be complex and x real, we separate in (2.3) the real and imaginary parts and eli- 
minate Re C. We obtain 

.7%2 (x2 - qx - 3) + ci [3 + 1.332%3 (x - q) + 0.3222x7 + Ci2[52 + 
0.44~~~~ (X - 4) + 0.11~~~21 + 2.67z2ci3 + 0.44z3ci* = 0, (ci = Im C) 

It can be seen that for any Q and z there is in the plane x, ci a curve tangent to the 

x-axis at the coordinate origin which intersects that axis at points a1 and u2. For small 
z that curve can be defined by the equation 3~~ = ZX~ (3 + gx - ~2). This implies that 

Im a1 (al) = 0 and Im ol(az) = 0, where (J~,~ = 0.5h0-1 [SW+ (S2W2 + ~l2W)‘~~l. 

Along the infinite intervals - m< k< 0, and O,< k<+ cy) wehave 

Im ol< 0,so that for t+ 00 and E > 0 
02-E +m 

s 
$ (k) @[K=MVl& + 0, 

s 
$ (k) ei[k”-~l(“)‘l & --> () 

--oL1 nl+E 

There are also two finite intervals a,.< k< 0 and 0 < k-C (rl along which 

Im a1 > 0. The monochromatic components of spectral expansions (3.2) which cor- 

respond to these intervals increase with t --too . For real k the branch o,(k) lies in 

the lower half-plane, hence the second term in (3.2) tends to zero for t --t co . 
Let us prove that in the first term of (3.2) the integration path between points kZ = 

Us - F and k, = a1 + E with E > 0 of the real axis can be shifted so as to have 
the condition Im o,(k) < 0 satisfied all along the new path. It can be readily shown 
that for perturbations which are localized at the initial instant of time 9 (k) is an entire 
function in the complex plane k. Owing to this the integrand function in (3.2) has no 
singularities, except the points of branching of function w (k). The behavior of h , thus, 
depends on the analytic properties of function c (X). 

Let us first, consider the case of z < 1. In the complex plane ‘H (Fig. 1) curve I‘ is 
constructed so that along it Im c1 = 0 . Since along the intervals - 00 < x < u2 
and a, < x < + oo of the real axis Im c1 < 0, hence, owing to the continuity of 
function cl(x) we find that Im cl< 0 lies in the region below curve I’. Branching 
points of function c (x) can only be found among the zeros of polynomial P (x). Let us 
determine these, Expanding function x which is defined by the equation P (K) = 0, 

*) The absolute stability for S = 0 was proved in [9]. The method used in [9] is appli- 
cable to the considered problem only for : < 1. 
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in increasing powers of z and restricting the expansion to the first two terms, we obtain 

(3.4) 

Comparing the first formula of (2.4) and (3.4), we find that for z < 1 the branching 

points of function c (?c) cannot lie in region Gs bounded by the part of curve f in the 
lower half-plane and the segment aanr of the real axis of the complex plane X. Let us 

show that for any 0 < z < + oo the branching points cannot lie on the boundary of 

region G. It is readily seen that the equation P (x) = 0 has no real roots, hence bran- 
ching points cannot lie on segment a2a1. They can neither lie on the remaining part of 

the boundary of region c, since otherwise we would have at r Im cl # 0 . Since 
function c (x) is continuo~ with respect to parameter a, z + 0, hence for any z bran- 

ching points cannot lie in region G. 
It is, thus possible to separate in some finite simply connected region wholly contain- 

ing G a single-valued branch c,(x). With the use of the Cauchy integral theorem the 
integration path for the first term in (3.2) can be shifted so that all along the new path 

the condition Im or< 0 is satisfied. In virtue of this h + 0 for t -+ co . 
Since in reality the region occupied by the film is bounded, hence for a fairly small 

initial amplitude perturbations leave that region before separation of the laminar flow 

takes place. Thus for 5%’ + (Szl$‘s + 12 w>s'z < 4x and R 2 1 the considered 
flow is absolutely stable. 
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